Wiener-Khinchin Theorem for Nonstationary Scale-Invariant Processes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Wiener-Khinchin Theorem for Non-wide Sense stationary Random Processes

We extend the Wiener-Khinchin theorem to nonwide sense stationary (WSS) random processes, i.e. we prove that, under certain assumptions, the power spectral density (PSD) of any random process is equal to the Fourier transform of the time-averaged autocorrelation function. We use the theorem to show that bandlimitedness of the PSD implies bandlimitedness of the generalized-PSD for a certain clas...

متن کامل

Khinchin theorem and anomalous diffusion.

A recent Letter [M. H. Lee, Phys. Rev. Lett. 98, 190601 (2007)] has called attention to the fact that irreversibility is a broader concept than ergodicity, and that therefore the Khinchin theorem [A. I. Khinchin, (Dover, New York, 1949)] may fail in some systems. In this Letter we show that for all ranges of normal and anomalous diffusion described by a generalized Langevin equation the Khinchi...

متن کامل

Aging Wiener-Khinchin theorem and critical exponents of 1/f^{β} noise.

The power spectrum of a stationary process may be calculated in terms of the autocorrelation function using the Wiener-Khinchin theorem. We here generalize the Wiener-Khinchin theorem for nonstationary processes and introduce a time-dependent power spectrum 〈S_{t_{m}}(ω)〉 where t_{m} is the measurement time. For processes with an aging autocorrelation function of the form 〈I(t)I(t+τ)〉=t^{Υ}ϕ_{E...

متن کامل

Aging and nonergodicity beyond the Khinchin theorem.

The Khinchin theorem provides the condition that a stationary process is ergodic, in terms of the behavior of the corresponding correlation function. Many physical systems are governed by nonstationary processes in which correlation functions exhibit aging. We classify the ergodic behavior of such systems and suggest a possible generalization of Khinchin's theorem. Our work also quantifies devi...

متن کامل

Khinchin Theorem for Integral Points on Quadratic Varieties

We prove an analogue the Khinchin theorem for the Diophantine approximation by integer vectors lying on a quadratic variety. The proof is based on the study of a dynamical system on a homogeneous space of the orthogonal group. We show that in this system, generic trajectories visit a family of shrinking subsets infinitely often.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review Letters

سال: 2015

ISSN: 0031-9007,1079-7114

DOI: 10.1103/physrevlett.115.080603